Определяем валентность химических элементов
Уровень знаний о строении атомов и молекул в XIX веке не позволял объяснить причину, по которой атомы образуют определенное число связей с другими частицами. Но идеи ученых опередили свое время, а валентность до сих пор изучается как один из основных принципов химии.
Vsebina
- Из истории возникновения понятия «валентность химических элементов»
- Развитие взглядов
- Валентность по водороду и кислороду
- Как определять валентность химических элементов
- Постоянная и переменная валентность
- Современные представления о валентности
- Зависимость валентности от строения атома
- Валентность и степень окисления
Из истории возникновения понятия «валентность химических элементов»
Выдающийся английский химик XIX века Эдвард Франкленд ввел термин «связь» в научный обиход для описания процесса взаимодействия атомов друг с другом. Ученый заметил, что некоторые химические элементы образуют соединения с одним и тем же количеством других атомов. Например, азот присоединяет три атома водорода в молекуле аммиака.
В мае 1852 года Франкленд выдвинул гипотезу о том, что существует конкретное число химических связей, которые атом может образовывать с другими мельчайшими частицами вещества. Франкленд использовал фразу «соединительная сила» для описания того, что позже будет названо валентностью. Британский химик установил, сколько химических связей формируют атомы отдельных элементов, известных в середине XIX столетия. Работа Франкленда стала важным вкладом в современную структурную химию.
Развитие взглядов
Немецкий химик Ф.А. Кекуле доказал в 1857 году, что углерод является четырехосновным. В его простейшем соединении — метане — возникают связи с 4 атомами водорода. Термин «основность» ученый применял для обозначения свойства элементов присоединять строго определенное количество других частиц. В России данные о строении вещества систематизировал А. М. Бутлеров (1861). Дальнейшее развитие теория химической связи получила благодаря учению о периодическом изменении свойств элементов. Его автор — другой выдающийся русский химик, Д. И. Менделеев. Он доказал, что валентность химических элементов в соединениях и другие свойства обусловлены тем положением, которое они занимают в периодической системе.
Графическое изображение валентности и химической связи
Возможность наглядного изображения молекул — одно из несомненных достоинств теории валентности. Первые модели появились в 1860-х, а с 1864 года используются структурные формулы, представляющие собой окружности с химическим знаком внутри. Между символами атомов черточкой обозначается химическая связь, а количество этих линий равно значению валентности. В те же годы были изготовлены первые шаростержневые модели (см. фото слева). В 1866 году Кекуле предложил стереохимический рисунок атома углерода в форме тетраэдра, который он и включил в свой учебник «Органическая химия».
Валентность химических элементов и возникновение связей изучал Г. Льюис, опубликовавший свои труды в 1923 году после открытия электрона. Так называются отрицательно заряженные мельчайшие частицы, которые входят в состав оболочек атомов. В своей книге Льюис применил точки вокруг четырех сторон символа химического элемента для отображения валентных электронов.
Валентность по водороду и кислороду
До создания периодической системы валентность химических элементов в соединениях принято было сравнивать с теми атомами, для которых она известна. В качестве эталонов были выбраны водород и кислород. Другой химический элемент притягивал либо замещал определенное количество атомов H и O.
Таким способом определяли свойства в соединениях с одновалентным водородом (валентность второго элемента обозначена римской цифрой):
- HCl — хлор (I):
- H2O — кислород (II);
- NH3 — азот (III);
- CH4 — углерод (IV).
В оксидах K2O, CO, N2O3, SiO2, SO3 определяли валентность по кислороду металлов и неметаллов, удвоив число присоединяемых атомов O. Получали следующие значения: K (I), C (II), N (III), Si (IV), S (VI).
Как определять валентность химических элементов
Существуют закономерности образования химической связи с участием общих электронных пар:
- Типичная валентность водорода — I.
- Обычная валентность кислорода — II.
- Для элементов-неметаллов низшую валентность можно определить по формуле 8 - № группы, в которой они находятся в периодической системе. Высшая, если она возможна, определяется по номеру группы.
- Для элементов побочных подгрупп максимально возможная валентность такая же, как номер их группы в периодической таблице.
Определение валентности химических элементов по формуле соединения проводится с использованием следующего алгоритма:
- Запишите сверху над химическим знаком известное значение для одного из элементов. Например, в Mn2O7 валентность кислорода равна II.
- Вычислите суммарную величину, для чего необходимо умножить валентность на количество атомов того же химического элемента в молекуле: 2*7 = 14.
- Определите валентность второго элемента, для которого она неизвестна. Разделите полученную в п. 2 величину на количество атомов Mn в молекуле.
- 14 : 2 = 7. Валентность марганца в его высшем оксиде — VII.
Постоянная и переменная валентность
Значения валентности по водороду и кислороду различаются. Например, сера в соединении H2S двухвалентна, а в формуле SO3 - шестивалентна. Углерод образует с кислородом монооксид CO и диоксид CO2. В первом соединении валентность C равна II, а во втором — IV. Такое же значение в метане CH4.
Большинство элементов проявляет не постоянную, а переменную валентность, например, фосфор, азот, сера. Поиски основных причин этого явления привели к возникновению теорий химическй связи, представлений о валентной оболочке электронов, молекулярных орбиталях. Существование разных значений одного и того же свойства получило объяснение с позиций строения атомов и молекул.
Современные представления о валентности
Все атомы состоят из положительного ядра, окруженного отрицательно заряженными электронами. Наружная оболочка, которую они образуют, бывает недостроенной. Завершенная структура наиболее устойчива, она содержит 8 электронов (октет). Возникновение химической связи благодаря общим электронным парам приводит к энергетически выгодному состоянию атомов.
Правилом для формирования соединений является завершение оболочки путем приема электронов либо отдачи неспаренных - в зависимости от того, какой процесс легче проходит. Если атом предоставляет для образования химической связи отрицательные частицы, не имеющие пары, то связей он образует столько, сколько у него неспаренных электронов. По современным представлениям, валентность атомов химических элементов — это способность к образованию определенного числа ковалентных связей. Например, в молекуле сероводорода H2S сера приобретает валентность II (–), поскольку каждый атом принимает участие в образовании двух электронных пар. Знак «–» указывает на притяжение электронной пары к более электроотрицательному элементу. У менее электроотрицательного к значению валентности дописывают «+».
При донорно-акцепторном механизме в процессе принимают участие электронные пары одного элемента и свободные валентные орбитали другого.
Зависимость валентности от строения атома
Рассмотрим на примере углерода и кислорода, как зависит от строения вещества валентность химических элементов. Таблица Менделеева дает представление об основных характеристиках атома углерода:
- химический знак — C;
- номер элемента — 6;
- заряд ядра — +6;
- протонов в ядре — 6;
- электронов — 6, в том числе 4 внешних, из которых 2 образуют пару, 2 — неспаренных.
Если атом углерода в моноооксиде CO образует две связи, то в его пользование поступает только 6 отрицательных частиц. Для приобретения октета необходимо, чтобы пары образовали 4 внешние отрицательные частицы. Углерод имеет валентность IV (+) в диоксиде и IV (–) в метане.
Порядковый номер кислорода — 8, валентная оболочка состоит из шести электронов, 2 из них не образуют пары и принимают участие в химической связи и взаимодействии с другими атомами. Типичная валентность кислорода — II (–).
Валентность и степень окисления
В очень многих случаях удобнее использовать понятие «степень окисления». Так называют заряд атома, который он приобрел бы, если бы все связывающие электроны перешли к элементу, который имеет выше значение электрооотрицательности (ЭО). Окислительное число в простом веществе равно нулю. К степени окисления более ЭО элемента добавляется знак «–», менее электроотрицательного — «+». Например, для металлов главных подгрупп типичны степени окисления и заряды ионов, равные номеру группы со знаком «+». В большинстве случаев валентность и степень окисления атомов в одном и том же соединении численно совпадают. Только при взаимодействии с более электроотрицательными атомами степень окисления положительная, с элементами, у которых ЭО ниже, — отрицательная. Понятие «валентность» зачастую применяется только к веществам молекулярного строения.
- Что такое вещество? Какие бывают классы веществ. Отличие между органическими и неорганическими…
- В каких случаях константа диссоциации не имеет смысла?
- Большой Шигирский идол: фото, возраст, описание
- Подробно о том, что это за клавиша Numpad 1
- Что такое галогены? Химические элементы фтор, хлор, иод и астат
- Анаэробные бактерии. Жизнь без чистого кислорода
- Что такое химический процесс? Процесс химический: суть и роль в природе
- Что такое мышьяк? Характеристика, свойства и применение
- Что такое систематическая номенклатура
- Как найти молярную массу
- Общая формула аминокислот
- Ковалентная связь
- Тяжелая вода, ее получение и свойства
- Заряд электрона
- Что такое закон сохранения электрического заряда
- Масса нейтрона, протона, электрона – что общего?
- Работа в термодинамике
- Особенности строения атомов металлов
- Этот удивительный египетский треугольник
- Мощность множества: примеры. Мощность объединения множеств
- Сетевая модель данных